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ABSTRACT To estimate population abundance of wide‐ranging and elusive species, wildlife managers
require practical data‐collection methods that are efficient, accurate, and cost‐effective. Natural abundance
marking can provide a useful solution, but it has largely been utilized only for conservation monitoring of
species with very high distinctiveness. We estimated abundance of invasive wild pigs (Sus scrofa), a wide-
spread pest species with low to moderate distinctiveness, in the Tehachapi Mountains of California, USA.
Wild pigs are increasingly recognized as a major threat to wildland communities throughout the United
States, but we still lack cost‐effective ways to track their populations. We used natural markings to identify
individuals for mark–resight population estimation, developing a method based on standardized thresholds
of image quality and animal flank distinctiveness to account for the inherent variability of natural markings
among individuals. We tested our method over a 15‐month period during 2015 and 2016, using an array of
48 camera traps across a 48‐km2 survey grid. With 18.5% of wild pigs meeting our conservative standard of
identifiability, we estimated abundance using standard mark–resight methods that ranged from 506 (±69
[SE]) individuals in summer 2015 to 184 (±44) individuals in spring 2016. We were able to detect a likely
decline in the wild pig population from 2015 to 2016, which was supported by a simultaneous decline in
hunter harvest totals in the region during the same period. Our approach requires no trapping or tagging of
any kind, so it may be utilized as an efficient alternative to techniques that rely on physically capturing
animals to apply ear‐tags or neck‐bands for individual identification. © 2020 The Wildlife Society.

KEY WORDS abundance estimation, California, camera trap, invasive species, natural mark identification,
Poisson log‐normal, Sus scrofa, Tehachappi Mountains, wild pig.

Motion‐sensing camera traps are a reliable, noninvasive, and
relatively inexpensive method of population data collection,
particularly when researching cryptic species in remote
wilderness (Silveira et al. 2003). Since Karanth (1995) first
used camera traps to collect population data on tigers
(Panthera tigris) >20 years ago, the technology has emerged
as a powerful survey tool for wildlife managers and pop-
ulation ecologists. Researchers have used camera‐trap photo
data and mark–resight techniques to successfully estimate
population parameters for species ranging from snow leop-
ards (Uncia uncia) to giant panda (Ailuropoda melanoleuca),

without the use of artificial markers or tags of any kind
(Jackson et al. 2006, Chen et al. 2016). This was accom-
plished by using the animals’ unique natural pelage patterns
to identify individuals, from which capture histories were
generated and incorporated into statistical models for
population estimation.
Mark–resight approaches using natural marks initially

evaluated species with clear and uniformly distinctive pelage
patterns, such as zebras (Equus quagga), but have advanced
to include a range of other species with less distinctive
natural markers, such as gray whales (Eschrichtius robustus)
and mountain lions (Puma concolor; Cooke et al. 2007, Kelly
et al. 2008, Zero et al. 2013). Mark‐resight techniques rely
on a wider range of natural identifiers such as scars, de-
formities, and unusual pelage to distinguish individuals.
Improvement in camera‐trap technology in recent years,
both in terms of image resolution and functional reliability,
has made it possible to use camera traps efficiently to
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evaluate wildlife populations. Furthermore, technological
advance’s allow researchers to extend methods to an even
broader range of species by incorporating more subtle marks
to establish or confirm an individual’s identity (Kelly
et al. 2008). Our study continues the expansion of camera‐
trap survey applications by exploring a novel method of
using mark–resight population estimation for naturally
identifiable individuals from a population of invasive wild
pigs (Sus scrofa), a species generally characterized by
indistinct pelage.
Invasive wild pigs have become an increasingly problem-

atic species throughout much of the United States, causing
extensive ecological, agricultural, and property damage
while acting as a vector for numerous human and livestock‐
borne diseases (Pimental 2007, Jay‐Russell et al. 2012).
With an estimated population of approximately 7 million
across ≥41 states, expanding wild pig populations
throughout the continental United States have made the
control and management of increasing populations a pri-
ority across local, state, and national levels (Mayer and
Brisbin 2009). Despite the recognized need, we still lack
effective, long‐term population‐control methods throughout
much of their nonnative range. Control methods are limited
due in large part to a continued inability to effectively track
wild pig population change through time, because reliable
population estimates are necessary to build appropriate
population models and test the efficacy of any ongoing
control strategies (Baber and Coblentz 1986, Sweitzer
et al. 2000, Acevedo et al. 2007). A small number of
traditional capture–mark–recapture (CMR) studies have
generated density estimates for populations of wild pigs, but
this approach requires capturing and marking animals,
which is costly, labor‐intensive, and difficult to administer
across large landscapes (Andrzejewski and Jezierski 1978,
Baber and Coblentz 1986, Petit and Valiere 2006).
Noninvasive methods for estimating wild pig populations
have shown promise, such as CMR approaches that rely on
fecal DNA or hair‐trap sampling. However, usefulness of all
approaches are potentially limited by varying rates of sample
collection among age and sex classes (Ebert et al. 2010a,
2012). Furthermore, DNA analysis for hair and fecal sam-
pling approaches are time‐consuming and expensive (both
in the field and the lab), making this approach untenable for
many wildlife managers confronting real‐time management
decisions. Camera trapping provides an alternative option to
improve on these inefficiencies and provide a low‐cost,
noninvasive method of wild pig population estimation that
can be easily adopted across the wide range of landscapes
these animals currently occupy.
We tested an approach to estimate wild pig population

size using only natural marks documented through wildlife
cameras. We established a camera‐trap survey grid to collect
photo data over a 15‐month period from March 2015
through May 2016 at the Tejon Ranch in the Tehachapi
Mountains of California, USA. We used baseline standards
of image quality and animal flank distinctiveness to cata-
logue wild pig photos systematically and individually iden-
tify a subset of the population using a diversity of naturally

occurring marks. We analyzed encounter data from natu-
rally marked and unmarked individuals using mark–resight
models, which estimated abundance through time. By in-
corporating individual flank distinctiveness as a covariate,
we estimated heterogeneity in resighting rates between
marked individuals with variable distinctiveness, thereby
testing the effectiveness of our baseline standards in miti-
gating resighting bias associated with this novel method of
individual identification. Our specific objectives were to
evaluate 1) the use of naturally occurring marks to reliably
identify individual wild pigs, and 2) whether this approach
to individual identification can be used with mark–resight
models to estimate population abundance through time.

STUDY AREA

Our research was conducted at Tejon Ranch in the
Tehachapi Mountains of southern California, USA (Fig. 1).
At 1,093 km2, Tejon Ranch represented an important open‐
space corridor connecting the Los Padres and Angeles
National Forests with the Sequoia National Forest and
the southern Sierra Nevada (Kern County, 35°01′N,
−118°44′W). The region spanned a strong elevational
gradient and a wide range of climatic conditions; however,
the ranch was generally characterized by a Mediterranean
climate, with an average annual rainfall of 164mm that falls
between October and May. Average minimum and max-
imum temperatures are 6° and 36° C, respectively (Diamond
et al. 2013). Since at least 1990, Tejon Ranch has been oc-
cupied by a population of wild pigs. In recent years, wild pigs
have been identified as one of the primary threats to the
native ecology of the region because their extensive rooting
and wallowing across all habitat types have disrupted floral
and faunal communities while acting as a vector for invasive
vegetation (Kunkel 2013).

METHODS

We collected camera‐trap photo data over 15 months be-
tween March 2015 and May 2016, and delineated our data
into 5 consecutive, 3‐month sampling intervals. During this
time, wild pigs were actively hunted across the Tejon
Ranch, including our survey area, with reduced hunting
pressure in August 2015 and February 2016 when the Tejon
Ranch Company restricted access to the majority of their
hunt club members.
We selected a grid cell size of 1 km2 to ensure that mul-

tiple camera locations were present within the known home
range of wild pigs. Movement patterns and territoriality are
known to vary between sexes of wild pigs and across habitat
conditions, but a rough estimate of home range size for wild
pigs in California was estimated by Sweitzer et al. (2000)
to be approximately 4 km². Within each 1 × 1 km cell, we
installed one white‐flash camera trap (Reconyx Hyperfire
550, Holmen, WI, USA) and set it to capture wildlife ac-
tivity in 5‐image bursts, 24 hours/day. Within each cell, we
placed camera sites along travel corridors for wild pigs.
Specifically, we aimed to place cameras within each cell at
pinch points on the landscape that constrained animal
movement along roads or game trails.
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We set cameras approximately 60–100 cm off the ground
and 2–4m from the anticipated travel path. We set cameras
at 90° angles to the anticipated path to maximize the
likelihood of capturing clear images of animals’ flanks.
Wherever possible, we oriented cameras northward to avoid
false triggers related to interference from direct sunlight and
framed field of view against a hillside or other solid back-
drop (as opposed to open landscape) to improve flash per-
formance during nighttime captures. We placed cameras a
minimum distance of 100 m away from potential attrac-
tants, such as active wallowing areas, that were likely to
concentrate wild pigs. We checked cameras and retrieved
photo data at monthly intervals to ensure cameras were
operational and photo frames unobstructed throughout the
survey period.

Photo‐ID
Wild pigs on Tejon Ranch present a wide range of heter-
ogeneous marks and pelage patterns. To standardize the
identification of individuals, we established a system to ac-
count for the variability of image quality and animal flank
distinctiveness, based on a similar protocol developed by
Cooke et al. (2007) to estimate populations of Atlantic gray
whales from boat‐based photographic surveys.
Following each camera check throughout the 15‐month

survey period, we retrieved photo data and sorted by species.
We grouped all wild pig images into sets of independent

encounters defined by a 30‐minute quiet period of inactivity
before and after wild pigs encountered a given camera
(O’Brien et al. 2002). A single trained observer then
assessed all images in each encounter to determine if 1) the
animal in the photograph was an adult (piglets and subadults,
defined by size and distinctive juvenile pelage, were not in-
cluded as part of our analysis); 2) the image was of sufficient
quality (see image quality below) to determine whether the
animal photographed was marked or unmarked; and 3) the
exposed flank captured within the image was sufficiently
distinctive to establish or confirm the individual’s identity
(see flank distinctiveness below). If these conditions were met
for ≥1 image captured within an encounter, we imported the
image or images into a photo‐ID (PID) catalogue. We then
compared images against all other known individuals to de-
termine whether they represented a resight of a known in-
dividual or the initial capture of an identifiable individual new
to the PID catalogue. All resight data used to estimate
population abundance were confirmed by ≥1 additional
independent observer.

Image Quality and Flank Distinctiveness
Image quality.—To standardize image quality, we

established a baseline threshold that defined the lower limit
on quality for all images entering the PID catalogue. The
baseline assumes that for a photo to be usable for mark–resight
population estimation, it must be of high enough quality to

Figure 1. Map of survey grid used to identify and resight wild pigs within Tejon Ranch in the Tehachapi Mountains of California, USA (Kern County,
35°01′N, −118°44′W). Each 1 × 1‐km grid cell contained one camera station collecting mark–resight data for invasive wild pig population estimation.
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confirm the identity of the least distinctive individual in the
catalogue, were that individual to be hypothetically transposed
into the image (Fig. 2). We defined 6 parameters that
contributed to overall image quality: 1) aspect (featured
animal’s left or right flank) is an appropriate distance from the
camera, (2–4m); 2) aspect is photographed at an approximate
90° angle to the camera; 3) aspect is completely within frame
and within flash radius; 4) image is without blurring due to
rapid animal movement; 5) image is without environmental
disturbance (mud, rain, fog, dust, snow, etc.); and 6) image is
without camera malfunction (overcompensation, flash fail,
etc.). Based on these parameters, we categorized catalogue
photos by quality. Wild pig encounters containing only poor‐
quality images, in which the mark status of the individual
captured was indeterminate, were not included in the PID
catalogue or used for mark–resight population estimation. We
considered all other wild pig photos eligible for entry into the
PID catalogue. Additionally, we flagged particularly high‐
quality images of marked individuals, containing most or all of
the 6 parameters described above, for use as stock photos to
confirm future resights.
Flank distinctiveness.—Distinctiveness refers to overall

identifiability and we assessed it independently for each
flank of an individual entering the PID catalogue. We
assessed distinctiveness as a combination of 1) visibility,
2) uniqueness, and 3) permanence of the features (e.g., pelage
patterns, scars, ear tears, tail kinks, rub marks, deformations)

used to identify an individual. Visibility refers to how
discernible a feature would appear in images of different
quality (e.g., only features with high visibility are discernible
in images of poor quality). However, there were also many
highly visible features that were so common within the
population that they contributed little to confirming the
identity of an individual. Uniqueness is a generalized
assessment of how common certain features were within
the entire pig population. Permanence refers to the reliability
of features and attempts to account for the rate at which
certain features changed over time (Negrões et al. 2010).
For an individual to be considered adequately distinct for

entry into the PID catalogue, they had to possess a feature
or collection of features that met baseline standards for all
3 criteria. If an individual’s features met or surpassed all
distinctiveness standards, we described primary features and
imported descriptive notes (including secondary feature
descriptions, sex, and sounder associations) into the PID
catalogue along with the encounter photos used to establish
its identity. We similarly imported encounter photos used to
resight known individuals into the PID catalogue, creating
an easily accessible photographic record of the individual’s
complete capture history. This was the first attempt to track
natural markers of wild pigs over time; therefore, we were
unsure of how quickly certain features like scars and rub
marks would change over time. To be conservative, we fo-
cused only on larger, easily distinguished markers that we

Figure 2. As example of criteria of image quality we show 4 photos (A–D) that were used to identify and resight wild pig M02 over a period of 9 months
across multiple camera stations within our survey grid on Tejon Ranch, California, USA, during 2015–2016. Photo A represents a high‐quality image
containing all 6 parameters that contribute to image quality. Images of this quality should be used to confirm future resights of this individual. Photos B and
C do not include all 6 parameters that contribute to image quality, but are of adequate quality to definitively confirm the identity of this individual, and
(hypothetically) all other identifiable individuals included in our mark–resight catalogue. Note that the physical condition of this individual has visibly
changed, and yet identifiable marks persist. Photo D is of poor quality and can only definitively confirm the identity of the most distinctive individuals
featured in our mark–resight catalogue. This resight will not be included in our analysis because this image is of inadequate quality to (hypothetically) identify
all individuals included in our mark–resight catalogue.
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were confident would remain consistent across the 3‐month
sampling intervals used for our analysis. This approach also
increased the overall efficiency with which wild pig photo
data were processed and confirmed. We classified all
animals that did not meet our standardized baseline of
distinctiveness for this survey as unmarked individuals.
To include distinctiveness as a covariate during analysis,

we associated each individual’s flanks with an ordinal dis-
tinctiveness value (DV) based on distinctiveness relative to
the entire population of marked individuals. This value was
based on general appearance categories that distinguished
extremely distinctive piebald individuals from those char-
acterized by more common black, gray, and brown pelages
(Fig. 3). We considered only clearly identifiable flanks,
categorized by a distinctiveness value ≥3, to be uniquely
marked and entered these in the PID mark–resight cata-
logue. The ordinal scoring system allowed us to test the
heterogeneity of resighting probabilities based on dis-
tinctiveness, and determine whether, despite our baseline
standards, those most distinctive individuals were dis-
proportionately resighted as a result of the unusual visibility
of their identifiable marks. We independently conducted
the assessment for both the left and right flanks of in-
dividuals entering the catalogue; however, we analyzed only
left‐flank photo data for this study.

Photo‐ID Catalogue
We used Adobe Photoshop Lightroom 5 to organize
and catalogue resight photographs and individual capture

histories through time. The platform allowed us to embed
searchable keywords and other pertinent metadata into in-
dividual photographs based on the specific features, or
feature types, used to identify the individual contained within
the image. Through these searchable keywords, we were able
to efficiently process photo data by comparing incoming pig
photos with only those individuals sharing similar diagnostic
features, thus, dramatically decreasing the observer effort
required to determine whether incoming images represented
a resight of a previously identified individual or the first
encounter of an individual new to the PID catalogue.
When an incoming image was determined to represent an

individual new to the PID catalogue, we set‐up an archive
specific to that individual to contain the full capture history
of the individual, and established a profile based on the
individuals’ identifiable features and embedded it into the
image(s) as metadata. If an incoming image was identified
as a resight of an individual already in the PID catalogue,
we embedded the image(s) with that individual’s metadata
profile and catalogued it within the individual’s existing
capture history folder.

Mark–Resight Analysis
We applied the Poisson log‐normal estimator under robust
design to estimate population abundance using left‐flank
photo data from both marked and unmarked wild pigs
collected across our 15‐month sampling window (PNE;
McClintock et al. 2009, Alonso et al. 2015, McClintock
and White 2012). We developed our model using RMark

Figure 3. Variable levels of flank distinctiveness standardized as an ordinal covariate for analysis of photos used to identify and resight wild pigs using
multiple camera stations on Tejon Ranch, California, USA, during 2015–2016. Distinctiveness values (DV) are based on broad categories of appearance
based on the relative visibility, uniqueness, and permanence of marks used to identify individuals. Based on our intentionally conservative standard, only
individuals above DV2 were considered marked and included in the PID catalogue.

Teton et al. • Using Natural Marks to Estimate Abundance 5



(Laake 2013), an application within Program R (R Core
Team 2017) that enabled us to build and compare models
from Program MARK (White and Burnham 1999). Con-
ventional mark–recapture analyses assume a geographically
(immigration and emigration) and demographically (births
and deaths) closed population within which sighting
probabilities are equivalent between all individuals. To
account for these resight data collected throughout the
study, we modelled our sampling window as 5 consecutive,
3‐month primary sampling intervals, within which geo-
graphic and demographic transition would be limited.
However, our survey grid was unbounded and surrounded
by viable habitat, and our population was actively hunted;
therefore, we could not assume complete geographic or
demographic closure, even within our discrete seasonal
sampling intervals. Naturally identifiable individuals are
distributed randomly across the population, and discovered
as opposed to intentionally distributed, so the exact number
of marked individuals using our study grid was unknown.
A zero‐truncated Poisson log‐normal estimator (ZPNE;
McClintock et al. 2009) applied under robust design ac-
counts for unknown marked individuals, as well as in-
dividual heterogeneity and simple random sampling with
replacement (as was the case across our continuously op-
erating camera‐trap array on Tejon Ranch). We generated
estimates for abundance (N ), apparent survival (φ), and
transition rates between observable and unobservable states
(γ′ and γ″) from this model. We derived abundance esti-
mates and overall mean resighting rates (λ) for each sea-
sonal sampling interval from the total number of sightings
of unmarked individuals, capture histories of each marked
individual resighted at least once, and mean resighting rates
for all individuals (α) together with the individual hetero-
geneity of resighting rates between individuals (σ).
Additionally, in (Z)PNE individual covariates can be in-

corporated to more accurately model mean resighting rates
and individual heterogeneity. This was particularly relevant
for our study because we were relying on untested baseline
standards to account for potential resighting bias related to

the wide range of marks used to identify individuals. By
incorporating relative distinctiveness values (DV 1–6) as an
ordinal covariate into our model, we were able to account
for its potential influence on resighting probabilities be-
tween individuals. We also included sex as a binary covariate
(males= 0 females= 1) that could potentially influence re-
sighting rates, because males are known to travel more and
occupy significantly larger home ranges than females
(Sweitzer et al. 2000). Using an approach first developed by
Corlatti et al. (2016), we considered a series of parameter
combinations of increasing complexity where the simplest
model assumed mean resighting rate (α) remained constant,
whereas the most complex model assumed α was a function
of the interaction between sex and level of distinctiveness, in
addition to seasonal sampling interval. The primary goal of
our analysis was to determine whether our method of data
collection could be used to estimate population abundance.
Based on this objective, we limited our analyses of param-
eter combinations to 10 models that allowed the number of
unmarked individuals in the population during each season
(U) to change. Further, the level of heterogeneity for in-
dividual resighting rates (σ), apparent survival between
primary sampling intervals (φ), and transition rates between
observable and unobservable states (γ′ and γ″) was constant
across primary sampling intervals. Our survey area was not
geographically closed, so abundance estimates generated
from these models reflect the super population size (N ̂), or
the total number of individuals that occupied our sampling
grid throughout the sampling window.
We evaluated competing models using Akaike’s Information

Criterion (AIC) values adjusted for small sample sizes (AICc)
and weight (wi). We used these values to rank the 10 resight
models used for this analysis based on overall fit and com-
plexity (Table 1), from which we derived parameter estimates
through model‐averaging (Anderson and Burnham 2002).

RESULTS

Over the 15‐month survey period from March 2015
through May 2016, our camera‐trap array recorded 3,204

Table 1. Mark–resight model rankings used for population estimation of invasive wild pigs on Tejon Ranch, California, USA, derived from camera trap
photos of naturally marked and unmarked wild pigs from March 2015 through May 2016.

Modela AICc
b ΔAICc

c wi
d No. of parameters

α (season+ sex) σ (.) U (season) γ′ (.) γ″ (.) φ (.) 1,096.62 0 0.27 14
α (season) σ (.) U (season) γ′ (.) γ″ (.) φ (.) 1,096.78 0.15 0.25 13
α (season+ sex+DV ) σ (.) U (season) γ′ (.) γ″ (.) φ (.) 1,098.40 1.78 0.11 15
α (season+DV ) σ (.) U (season) γ′ (.) γ″ (.) φ (.) 1,098.90 2.28 0.09 14
α (season+ sex × DV ) σ (.) U (season) γ′ (.) γ″ (.) φ (.) 1,098.99 2.37 0.08 16
α (.) σ (.) U (season) γ′ (.) γ″ (.) φ (.) 1,099.39 2.76 0.07 9
α (sex) σ (.) U (season) γ′ (.) γ″ (.) φ (.) 1,099.67 3.05 0.06 10
α (sex+DV ) σ (.) U (season) γ′ (.) γ″ (.) φ (.) 1,101.19 4.56 0.03 11
α (DV ) σ (.) U (season) γ′ (.) γ″ (.) φ (.) 1,101.29 4.66 0.03 10
α (sex × DV ) σ (.) U (season) γ′ (.) γ″ (.) φ (.) 1,102.73 6.10 0.01 12

a Zero‐truncated Poisson log‐normal mark–resight models ranked using Program MARK. Variables: ordinal distinctiveness value of each individual’s
flanks (DV ), no. of unmarked individuals in the population during each season (U ), mean resighting rates for all individuals (α), individual heterogeneity
of resighting rates between individuals (σ), transition rates between observable and unobservable states (γ′ and γ″), and apparent survival (φ).

b AICc=Akaike’s information criterion corrected for small sample size.
c ΔAICc= differences in AICc between each model and the model with the lowest AIC.
d wi=model wt calculated using AICc, indicating the relative support for the given model.
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independent encounters with wild pigs, which included
4,556 sightings of individual adults and 648 sightings of
piglets and subadults. Of those adult encounters, 2,545 in-
dividuals were sighted with their left flanks oriented to the
camera. Of those left‐flank sightings, 2,152 (84.6%) met all
our standards for image quality and were considered eligible
for mark–resight analysis. During this period, we estab-
lished catalogue profiles, and recorded capture histories for
the 73 individuals considered identifiable from natural
marks (visible from a left‐flank orientation), based on our
standard of flank distinctiveness. These 73 individuals
consisted of 38 females and 35 males and were resighted
398 times, representing 18.5% of adult left‐flank encoun-
ters. The mean number of resightings for marked in-
dividuals was 5.45, with a range of 1–37 (median= 3). On
average, males were resighted 63% more often than females
(average no. of resightings for males= 6.83, females= 4.18).
A discovery curve across all 5 seasonal sampling intervals
suggests a leveling‐off of newly identified individuals
entering the PID catalogue, with >80% of marked in-
dividuals identified within the first 2 seasonal sampling
intervals (Fig. 4).
Model rankings based on AICc values of the 10 models

demonstrated no definitive top model. To account for this,
we model‐averaged estimates of abundance (N ̂) and 95%
confidence across our 5 seasonal sampling intervals (Fig. 5).
Seasonal sampling interval (time) was associated with α in
all 5 of our top‐ranked models, while flank‐distinctiveness
was included in the third, fourth, and fifth of these top‐
ranked models. Overall mean resighting rates (λ) were es-
timated as 2.183 (SE= 0.397, 95% CI= 1.539–3.116),
2.010 (SE= 0.342, 95% CI= 1.449–2.804), 1.953
(SE= 0.325, 95% CI= 1.416–2.704), 1.439 (SE= 0.267,
95% CI= 1.008–2.073), and 1.023 (SE= 0.234, 95%
CI= 0.669–1.614) for seasons 1–5 respectively, while het-
erogeneity of individual resighting rates (σ) was estimated at
0.952 (SE= 0.084, 95% CI= 0.801–1.132).
Individual encounter totals fluctuated across seasonal

sampling intervals and declined precipitously from Spring

2015 to Spring 2016. Between these 2 sampling intervals
individual encounter totals (adults only, left‐ and right‐flank
encounters) declined almost 78% and left‐flank encounters
used for this analysis declined from 663 in Summer 2015 to
135 in Spring 2016. A significant birth pulse appeared to
have occurred in Spring 2015, with 446 individual piglet/
juveniles sighted; by contrast, only 55 were sighted in
Spring 2016 (includes both left‐ and right‐flank sightings).
There were no piglet/juveniles sighted from November
2015 through February 2016.

DISCUSSION

Abundance Estimates
We demonstrate that natural pelage markings can be used to
generate robust estimates of wild pig abundance with rea-
sonably low coefficients of variation. Our approach provided
the first estimate of wild pig abundance using a standardized
methodology to identify and resight individuals using nat-
ural marks from wildlife cameras and the first estimate of
their abundance on Tejon Ranch. Our results suggest that
the Tejon Ranch supports a large population of wild pigs
and that the population was likely in decline during the
study. Seasonal abundance estimates were in decline across
our study area following Summer 2015, and although
movement patterns and distribution of wild pigs are known
to naturally fluctuate throughout the year, a direct compar-
ison of springtime estimates from 2015 and 2016 indicate
this trend may not be entirely explained by seasonal
variation. Additionally, overall mean resighting rates fell
from a high of 2.183 (SE= 0.397, 95% CI= 1.539–3.116)
in Spring 2015 to a low of 1.023 (SE= 0.234, 95%
CI= 0.669–1.614) in Spring 2016, further indicating a
decline that cannot be completely explained by seasonal
variation in distribution. Furthermore, there is significant

Figure 4. Discovery curve of newly identified wild pigs during 5
consecutive seasonal sampling intervals across our 48‐km2 survey grid on
Tejon Ranch, California, USA, during 2015–2016.
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Figure 5. Comparing estimators and indices of wild pig abundance across
Tejon Ranch, California, USA. Mark–resight estimates (vertical bars
represent 95% CI) of wild pig abundance across our 48‐km2 survey grid are
compared with total wild pig hunter harvest across Tejon Ranch. Data
collected across 5 consecutive seasonal sampling intervals from March 2015
through May 2016 were analyzed using the Poisson log‐normal estimator
under robust design. Estimates represent averages of competing models
with delta AICc values ≤2. Seasonal harvest totals for wild pigs hunted
across Tejon Ranch from September 2014 through November 2016 appear
as reported by the Tejon Ranch Company. Both metrics suggest the wild
pig population on Tejon Ranch was in decline from 2015 to 2016.
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anecdotal evidence that suggests Tejon Ranch’s wild pig
population was in decline during the study period, as hunter
harvest across the property dropped markedly despite con-
sistent hunter effort (Fig. 5). The Tejon Ranch Company’s
wild pig hunting program, one of the largest in California,
harvested 1,188 pigs in 2014, 616 in 2015, and only 305 in
2016. Although annual hunter harvest rates may fluctuate
for many reasons other than population density (data on
hunting effort were not available), our results suggest a
ranch‐wide decline of a population that was, at least recently,
well into the thousands of individuals.
However, the decline in our estimates did not reflect the

outright collapse that raw encounter totals would suggest.
Rather, the reduction in overall input data in Spring 2016
resulted in a substantial loss in precision relative to the other
seasonal sampling intervals (Table 2). For the first 4 sea-
sonal sampling intervals, the coefficient of variation (CV)
ranged from 15% to 18%; whereas in Spring 2016 this
measure increased to 26%. Thus, abundance estimates for
Spring 2016 are more variable relative to the mean, and
thereby less reliable, than estimates of all other seasonal
sampling intervals analyzed for this study. This uncertainty
reduces our ability to make confident empirical statements
about population trends and may limit the potential appli-
cation of this method in areas where wild pig abundance is
low. As Keiter et al. (2017) proposed in their comparison of
density estimators used to assess wild pig populations, in-
cluding the short‐term use of natural marks around baited
camera traps, sampling design should seek to maximize
individual detections around multiple camera sites to im-
prove the accuracy of population estimates. This can be
accomplished by increasing the number of camera traps
within a given survey area, relative to the average home‐
range size of the subject species. A greater understanding of
site‐specific home‐range size would improve our ability to
design a survey grid that maximizes individual detection
potential for wild pigs in this part of the Tehachapis.
Wild pig fecundity and range size are known to vary sig-

nificantly in response to changes in environmental con-
ditions and resource availability (Bieber and Ruf 2005). The
years of 2015 and 2016 represented the fourth and fifth year
of sustained drought conditions in southern California. This
extended drought visibly depressed many ecological com-
munities on Tejon, as evidenced by wide‐spread conifer die‐
off and poor acorn production across all oak species (Griffin

and Anchukaitis 2014). Acorns are a major staple in the diet
of wild pigs on Tejon Ranch, so it seems likely this lack of
primary production contributed, at least in part, to the ap-
parent population decline during this period (Espelta
et al. 2008).

Data Processing and Baseline Standards
Mark–resight models under robust design provide flexibility
when analyzing photo data captured using a variety of field
methods. There are, however, important assumptions that
must be met to produce unbiased estimates (McClintock and
White 2012, McClintock et al. 2014). Our method relies on a
wide range of variable marks to identify individuals; therefore,
it was critical that we could account for and standardize the
relative distinctiveness of these marks to meet the assumption
that all marked individuals within the population are equally
detectable. By using generalized descriptors and broad cate-
gorical assessments of natural marks, we were able to in-
corporate distinctiveness as an ordinal covariate into our
analysis and assess its influence on resighting rates. Among
all our top models, heterogeneity of individual resighting
rates was roughly equivalent (0.945, SE= 0.084, 95%
CI= 0.794–1.124; 0.958, SE= 0.084, 95% CI= 0.807–1.138;
and 0.941, SE= 0.084, 95% CI= 0.79–1.121 for models
ranked 1–3, respectively), suggesting that our covariates
(gender and distinctiveness) were not major drivers of re-
sighting probability. Furthermore, the only highly ranked
model that included distinctiveness as a covariate was out-
performed by a more parsimonious model, indicating that
distinctiveness was uninformative as a covariate and thus had
little or no effect on resighting rates among our marked
population. This suggests that by excluding low‐quality images
from the data set, we were able to include less distinctive
individuals into the PID catalogue without introducing re-
sighting bias favoring more distinctive individuals. Strict
image‐quality standards also minimize misidentification errors
related to demographic information such as sex and age class,
which can be difficult to discern in poor‐quality images. Ad-
ditionally, by limiting our data set to higher quality images,
observers were able to process photo data more efficiently
without having to substantially enhance or cross‐reference
partially identifiable individuals from poor quality images.
Overall, we prioritized efficiency and conservatism when

applying this method to wild pigs on Tejon Ranch. This is
reflected in our conservative baseline standard for flank‐
distinctiveness used to qualify individuals as marked. If
we were to lower these standards, a greater percentage of the
overall population would be considered identifiable, and the
image quality standard required to identify these less dis-
tinctive individuals would increase. We expect this increase
in the proportion of marked to unmarked individuals in the
population would result in greater precision around abun-
dance estimates. However, this would also limit the total
number of encounter photos used in the analysis and po-
tentially increase the time needed to process the remaining
photo data. Comparative methods testing is required to
determine the range of image and distinctiveness standards
within which precision and efficiency are maximized.

Table 2. Estimates of superpopulation (N ̂) of invasive wild pigs on Tejon
Ranch, California, USA, from March 2015 through May 2016 across
5 3‐month sampling intervals, the standard error (SE) of those estimates,
the 95% confidence intervals (CI) of those estimates and their associated
coefficient of variation (CV), averaged across all contending models.

Sampling
interval N ̂ SE

Lower
95% CI

Upper
95% CI CV

Spring 2015 218 37 156 305 0.17
Summer 2015 354 52 266 473 0.15
Autumn 2015 301 47 223 408 0.16
Winter 2015 171 31 121 243 0.18
Spring 2016 143 37 88 236 0.26
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MANAGEMENT IMPLICATIONS

Our method of identifying naturally marked individuals,
based on standards of image quality and flank distinctive-
ness, was developed as a flexible template that could be
broadly applied across a range of species and habitats as a
noninvasive alternative to trapping and tagging. Wild pigs
on Tejon Ranch provided an excellent opportunity to test
the potential of this approach because wild pig population
parameters can be difficult to estimate, particularly across
densely vegetated and topographically dynamic landscapes;
and wild pigs are an ecologically important pest species
across a wide range of areas (Ebert et al. 2010b). Our study
demonstrates that a standardized analysis of camera trap
photo data can successfully identify a substantial proportion
of individuals within populations characterized by generally
indistinct pelage. Our method relies solely on data gen-
erated from camera traps and requires minimal fieldwork
consisting only of camera‐trap installation and routine
maintenance; therefore, it can be implemented across
landscapes that would otherwise be economically or logis-
tically impractical to survey. It required 8–10 field days/
month for a technician to maintain our 48‐camera survey
grid, whereas a single trained observer could process an
entire month’s survey data in a period of 6–8 hours. These
survey implementation and data processing requirements
compare favorably with other field monitoring techniques
currently used to survey wildlife populations in remote set-
tings. Furthermore, recent advancements in automated
computer learning software capable of sorting thousands of
images per minute by species, and in some cases demo-
graphic class, will only enhance the potential of population
estimators that rely on camera‐trap data alone (Tabak
et al. 2019). For many wildlife managers facing resource
constraints, this simple monitoring approach can be used to
efficiently estimate real‐time changes in population dy-
namics to inform effective wildlife conservation and control
strategies.
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